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M embrane technology plays a critical role 
in biopharmaceutical purification, 
guiding manufacturing processes 
seamlessly from cell-culture clarification, 

through purification and polishing chromatography 
steps, and finally to fill–finish (1). Ultrafiltration 
(UF) and diafiltration (DF) precede the fill–finish 
stage. Often, those steps are integrated into a single 
process (UF/DF) that concentrates a drug substance 
and exchanges the buffer with a final formulation 
buffer. UF/DF operates on cross-flow filtration, also 
known as tangential-flow filtration (TFF), in which 
feed flows tangentially to a membrane’s surface 
rather than through it (2, 3). Traditional UF/DF 
systems comprise a feed/retentate tank, permeate 
tank, membrane holder, and a main pump that 
controls feed flow toward the TFF membrane (4). 

UF/DF processes typically involve mass-balance 
monitoring using scales or flow meters, requiring 
at-line samples for verifying protein concentration and 
other process parameters. However, that approach has 
drawbacks, including the need for detailed planning 
based on measurements of hold-up volumes, mass, 
and protein concentration. Variability across runs is a 
concern because UF/DF operation relies on a single 
variable (mass), necessitating pre- and post-run 
concentration measurements. Regular sampling 
introduces potential for human errors, material 
depletion, and contamination (5).

The therapeutic-antibody market continues to 
grow significantly, with 122 and 114 therapies 
having received US Food and Drug Administration 
(FDA) and European Medicines Agency (EMA) 
approval, respectively, as of June 2022 (6). Especially 
for subcutaneously administered therapeutic 
proteins, developers increasingly are selecting high-
concentration formulations to work with delivery 
devices’ restricted injection volume (1–1.5 mL), 
which is designed to minimize backpressure and 
injection pain (7). That trend has led to development 
of formulations that are concentrated enough to 
deliver the required amount of drug within the 

limited injection volume. Such formulations hold 
promise for simplifying drug-product storage and 
handling, but their manufacture is not without 
significant challenges (8, 9). During UF/DF processes, 
high-concentration antibody products — classified as 
injectable monoclonal or polyclonal antibody (mAb, 
pAb) therapies with concentrations ≥100 mg/mL — 
raise concerns for viscosity, pressure, cross-flow flux, 
and membrane fouling (8, 10). Moreover, protein–
protein intermolecular forces increase solution 
opalescence, complicating concentration and turbidity 
determination (11, 12).

Increasing demand for high-concentration mAb 
drugs places a significant burden on development 
teams to design and optimize process steps with 
increased protein content while maintaining critical 
quality attributes (CQAs). Concerns relating to 
stability, aggregation, and overall product quality 
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Figure 1: (TOP) Schematic of a CTech FlowVPX system 
connected in line (on the feed line) with a KrosFlo 
FS-15 RPM tangential-flow filtration (TFF) system; 
(BOTTOM) laboratory setup for the connected systems
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intensify with increased protein content (8, 10). 
Traditional analytical methods sometimes cannot 
provide timely insights about such parameters, 
creating industry need for advanced solutions that 
generate and analyze data in real time.

Defined by the FDA as means for designing, 
analyzing, and controlling pharmaceutical 
manufacturing processes, process analytical 
technologies (PATs) offer a framework for continuous, 
real-time assessment of critical parameters during 
biopharmaceutical development and manufacturing 
(13–16). Well-known PAT methods include in-line 
Raman spectroscopy and near- and mid-infrared (NIR, 
MIR) spectroscopic analyzers (14, 17–19). Although 
such instruments enable comprehensive monitoring 
of multiple process parameters (e.g., protein 
concentration, aggregation levels, and excipient 
concentrations), the resulting data are not readily 
interpretable (19, 20). Fully leveraging vibrational 
spectroscopic techniques requires that analysts apply 
specialized skill sets to process and make sense of 
collected data. Moreover, to extract valuable 
information in the form of concentration levels, 
analysts need additional skills in chemometrics and 
mathematical modeling. Thus, implementing PAT into 
operations often is difficult and time-consuming (21).

An alternative method for in-line, real-time 
monitoring of protein concentrations is variable-
pathlength technology (VPT) based on ultraviolet–
visible (UV-vis) spectroscopy and, accordingly, the 
Beer–Lambert law (22–24). Unlike traditional fixed-
pathlength sensors, the CTech FlowVPX 
spectrophotometry system enables dynamic 
pathlength adjustment, compensating for the high 
absorbance of concentrated samples and providing 
accurate concentration measurements within seconds 
(25, 26). The resulting real-time data inform an 
automated control system that reacts promptly to 
deviations, ensuring that a mAb formulation process 
stays within a predefined design space.

In a traditional mass-balance UF/DF process, 
deviations in concentration often are detected after 
they have occurred, diminishing overall process 
efficiency. By contrast, the automated KrosFlo FS-15 
TFF system provides for proactive control based on 
real-time concentration measurements with a VPT 
device (25, 27). Such capability can reduce the 
likelihood of quality deviations and enhance the 
robustness of an entire downstream process.

Herein, we present an in-line, automated, and 
concentration-controlled TFF process for high-
concentration mAb formulations. We show that a 
holistic approach combining VPT (in the FlowVPX 

system) with capabilities for automated TFF and 
in-line concentration control addresses challenges 
posed by traditional mass balances during 
downstream development (27). To demonstrate how 
such an approach enhances process control, scientists 
from our team conducted experiments with samples 
representing a broad array of high-concentration 
products (90–250 g/L). Our results indicate that 
automated TFF significantly improves process 
efficiency, reducing the need for corrective actions 
after process completion, eliminating human error, 
and enhancing overall product quality.

Materials and Methods
Materials: UF/DF studies used immunoglobulin G 
(IgG) mAbs derived from a Chinese hamster ovary 
(CHO) cell culture (Alvotech). Before the experiments, 
mAb samples underwent a series of clarification and 
processing steps, including depth filtration of harvest, 
protein A affinity chromatography, viral inactivation, 
polishing chromatography, and nanofiltration. The 
equilibration buffer (40 mM of excipient 1 and 135 mM 
of excipient 2, pH 6.0) was exchanged with DF buffer 
(5 mM of excipient 3 and 240 mM of excipient 4,  
pH 6.0) for final formulation of the protein material.

Equipment and Experimental Setup: Our team 
connected the 3.0-mm flow cell of a CTech FlowVPX 
system (Repligen) to a KrosFlo FS-15 RPM TFF system 
(Repligen) using Luer connectors (Kemía ehf, EW- 
45512-04) and 1.6-mm tubing (Masterflex L/S 16 
precision pump tubing, EW-96410-16). The flow cell 
was connected on the feed line between the retentate 
vessel and pump (Repligen, 999460). A magnetic stir 
plate (IKA C-MAG MS 4) operating at 100–200 rpm 
ensured consistent mixing in the retentate tank. 

Mirroring traditional UF/DF processes, an auxiliary 
pump (Repligen, F20000655), permeate scale (Repligen 
KrosFlo, ACSS-20K), and feed scale (Repligen, KrosFlo, 
ACSS-20K) regulated the DF phase along with a 
predefined number of diavolumes (DVs). Concentration 
phases relied on in-line measurements from the 
FlowVPX system, predefined in the RPM software as 
the endpoint values determined by the VPT device. 

The filtration systems used TangenX SIUS PDn 
HyStream (LP screen) single-use cassettes with 
surface areas of 0.01, 0.02, and 0.1 m2 (Repligen, 
XP030MP2L, XP030MP1L, XP030M01L). Those 
cassettes feature a filter capacity of <500 g/m2 and a 
molecular-weight cut-off (MWCO) of 30 kDa. Membranes 
were installed in a Pellicon cassette holder (Millipore, 
XX42PMINI) with the manufacturer-recommended 
torque setting of 180 lb and using the provided gaskets 
to prevent leaks. Figure 1 depicts the entire setup.
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Our study comprised seven independent runs. Before 
each run, the system underwent preconditioning with 
a 10-L/m2 water flush followed by a 10-L/m2 flush 
with equilibration buffer (40 mM of excipient 1 and 
135 mM of excipient 2, pH 6.0) to saturate it with a 
buffer optimal for the mAb. Starting protein solutions 
had concentrations of 10–16 g/L depending on the 
batch source. For all runs, a solution was concentrated 
to 40 g/L. The equilibration buffer was exchanged 
with a final formulation buffer (5 mM of excipient 3 
and 240 mM of excipient 4, pH 6.0). Then, the solution 
underwent a second concentration step to a target 
value. Final concentrations ranged from 90 to 250 g/L, 
representing a broad distribution. The flow rate differed 
by membrane area but was maintained at 3 L/m2/min, 
while transmembrane pressure (TMP) was regulated 
at 1.0 ± 0.3 bar using an air-bypass valve.

Protein-Concentration Measurements: UF/DF 
experimental protocols were established in the RPM 
software using the concentration–diafiltration–
concentration (C/D/C) approach, with concentration 
endpoints based on in-line measurements from the 
FlowVPX system. The DF endpoint was governed by the 
number of DVs, as regulated by scales. Operating in 
Quick Slope mode, the VPT device captured seven data 

points at 280-nm wavelength for each concentration 
measurement with a known extinction coefficient.

A VPT-enabled CTech SoloVPE Protein A280 system 
was operated in Quick Slope mode to take at-line 
measurements for comparison, capturing either 10 or 
six data points at a wavelength of 280 nm for each 
concentration measurement, using a known 
extinction coefficient. The expected protein-
concentration range determined the requisite number 
of data points. For samples with expected 
concentrations exceeding 100 g/L, we used six data 
points to ensure linearity in measurement. Samples 
for at-line measurement were collected for each UF/DF 
run, including samples from the beginning of the 
process and from before each concentration step. 
Table 1 presents those collective measurements. 

Results and Discussion
The KrosFlo FS-15 RPM TFF system served as an 
automated platform for monitoring and managing 
high-concentration UF/DF runs. Our experimental 
design followed a C/D/C approach, using in-line 
protein concentrations as endpoints for both the 
initial and final concentration phases. Unlike a 
traditional mass-balance approach, formation of the 

Figure 2: Real-time protein concentration trend from a concentration–diafiltration–concentration (C/D/C) run 
controlled by RPM software (initial concentration to 40 g/L and final concentration to 90 g/L); the dotted line 
represents the target concentration as determined by the software.
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Table 1: Comparison of in-line (FlowVPX system) and at-line (SoloVPE system) protein-concentration measurements 
for each run at different process steps 

Starting Concentration (g/L) Initial Concentration (g/L) Final Concentration (g/L)
Run SoloVPE FlowVPX %Diff SoloVPE FlowVPX %Diff SoloVPE FlowVPX %Diff
1 15.2 14.7 2.9 40.7 42.5 4.2 93.4 91.5 2.0
2 15.4 15.6 0.9 40.6 41.2 1.6 95.3 90.8 4.7
3 15.2 14.9 2.0 42.5 41.8 1.5 146.7 149.4 1.8
4 15.4 15.1 2.1 41.7 41.9 0.6 214.0 203.9 4.7
5 15.1 15.3 0.7 40.9 40.8 0.2 212.9 215.1 1.0
6 10.4 10.7 3.0 42.5 42.5 0.0 215.1 218.8 1.7
7 10.4 10.1 2.5 42.8 42.4 0.9 250.5 251.9 0.5
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recipe in the RPM software did not involve extensive 
calculations dependent on starting protein-solution 
concentrations and volumes of material in the feed/
retentate tank. Instead, the UF/DF process continued 
automatically to the next setpoint once FlowVPX 
system readings reached a target value.

To showcase the precision of automated TFF across 
a broad concentration spectrum, we conducted multiple 
runs with endpoints ranging from 90 to 250 g/L. 
Figure 2 plots data from the UF/DF run with a final 
concentration of 90 g/L, which is a common target for 
mAbs in final formulation intended for 50–60 g/L 
during fill–finish (28, 29). In the figure, the in-line 
concentration trend mirrors all phases of the UF/DF 
process, including initial concentration, DF, and final 
concentration, with at-line values overlaid for 
comparison. Throughout the run, automated control 
maintained key process parameters with a 
consistently low differential pressure across the 
membrane. The recipe ultimately achieved the 
predetermined protein concentration and DV setpoints 
without issue. In-line concentration values also 
corresponded closely with at-line values (Table 1).

In-line concentration measurements represent a 
significant advancement in bioprocessing, enabling 
continuous feedback in real time as compared to 
sporadic off-line measurements taken at specific time 
intervals. High-frequency collection of concentration 
data during different UF/DF stages provides analysts 
with a comprehensive and immediate overview of a 
protein product’s behavior. That allows for quick 
detection of deviations, immediate adjustments, and 
proactive responses to potential issues. Such 
adjustments are impossible with a traditional mass-
balance approach, in which any manual intervention 
requires process shutdown or a switch to the next 
setpoint. Moreover, the constant process overview 
afforded by in-line measurement reduces risks for 

needing an additional “overconcentration” step if a 
target concentration is not met initially in the mass-
balance–based recipe — a common challenge with 
highly concentrated formulations.

A run targeting 150 g/L served to investigate the 
accuracy of in-line, concentration-controlled TFF at a 
greater concentration (Figure 3). The run exhibited a 
consistent trend with no significant errors, and in-line 
and at-line concentration values correlated closely, 
with a 1.8% difference between the final 
concentration values. Across all runs, in-line and 
at-line measurements differed most for starting 
concentrations. Such discrepancies arise because 
at-line samples come directly from the starting 
material, whereas initial in-line samples experience 
slight dilution from residual equilibration buffer in 
the tubing used to precondition the membrane. To 
enhance precision between in-line and at-line 
measurements, analysts can circulate protein solution 
in the flow path to adapt the concentration or compare 
FlowVPX system values after collection of four or five 
data points. Regardless, the maximum difference 
between initial FlowVPX measurements and at-line 
values is 3%, which is negligible (Table 1).

Increasing demand for high-concentration mAb 
drug products (with final formulations exceeding the 
150-g/L threshold) now poses significant bottlenecks 
for TFF operations (28, 30). Achieving final UF/DF 
concentrations of 200–250 g/L is challenging because 
of pressure concerns, the need to maintain optimal 
process conditions, and the work required to support 
the process. Thus, automating TFF is increasingly 
attractive to downstream development teams. To 
assess the KrosFlo system’s performance at extreme 
mAb concentrations, we conducted a number of runs 
with the goal of surpassing the 200-g/L threshold.

Figure 4 presents data from a run with an endpoint 
of >200 g/L, as defined in the RPM software. In late 

Figure 3: Real-time protein concentration trend from a concentration–diafiltration–concentration (C/D/C) run 
controlled by RPM software (initial concentration to 40 g/L and final concentration to 150 g/L); the dotted line 
represents the target concentration as determined by the software.
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stages, the protein solution became highly viscous 
and decreased significantly in volume, complicating 
operation below the maximum feed pressure (3.0 bar) 
required toward the end of the process. That 
necessitated a manual flow-rate reduction. The process 
terminated when the in-line protein concentration 
surpassed 200 g/L. However, the at-line reading showed 
214 g/L, indicating a 4.7% difference in measurement. 
The discrepancy suggests that the at-line sample 
might not have represented the overall solution 
concentration accurately, emphasizing the need for 
more samples at higher concentrations to ensure 
result accuracy. However, for process-development 
(PD) purposes, the observed 4.7% difference between 
in-line and at-line measurements fell within an 
acceptable range given typical specifications for the 
final concentration step in our UF/DF process, 
allowing for further processing and adjustments.

To validate the consistency between in-line and 
at-line measurements at high concentrations, we 
performed two additional runs (5 and 6 in Table 1). 
Results showed differences in measurement of 1.0% 
and 1.7%, respectively. Those findings underscore both 
the importance of well-mixed solutions for at-line 
measurements and the need to take more samples at 
high concentrations. Moreover, inadequate in-process 
mixing at low volumes — especially during PD — can 
skew in-line readings and prematurely end a process. 
RPM software is programmed to stop a process after 
the first reading above a target value, posing problems 
for high-concentration solutions at low volumes. For 
runs aiming at 200 g/L, we adjusted the setpoint to 
>215 g/L. To ensure proper mixing and attainment of a 
target concentration, it is critical to obtain at least five 
consistent readings at a target value. We recommend 
selecting a setpoint of ≥5 g/L above the target in the 
RPM software to ensure the expected outcome and 
minimize need for manual intervention.

Considering the challenges that we encountered 
during those high-concentration runs — particularly 
with low solution volumes, high feed pressures, and 
insufficient mixing — we implemented adjustments in 
a final run targeting a protein concentration of 250 g/L. 
To enhance efficiency and facilitate process 
automation, we introduced two key modifications. The 
first was to increase the starting volume significantly 
by adopting the constant-feed concentration–
diafiltration–concentration (CFC/D/C) mode, departing 
from the traditional C/D/C approach. The CFC method 
incorporates an additional auxiliary pump for 
consistent replenishment of starting material to the 
feed tank throughout the first process phase. That 
change was crucial to ensuring a large enough volume 
of material in the final UF/DF phase. For the second 
adjustment, we set the final concentration endpoint to 
270 g/L instead of 250 g/L. That served to secure a 
sufficient number of data points beyond the target, 
thereby enhancing result accuracy. Those adjustments  
were implemented to enhance control, efficiency, and 
automation during high-concentration UF/DF.

Figure 5 represents data from the run targeting 
250 g/L, with overlaid at-line measurements. The 
final concentration determined by the FlowVPX 
system was 250.5 g/L, and the SoloVPE system 
recorded 251.9 g/L, resulting in a 0.5% difference 
between the two measurements. Our adjustment 
played a critical role in attaining process targets 
while minimizing human intervention during the 
process. Such implementation of automation not only 
will enhance overall process efficiency, but also will 
enable real-time process monitoring and control.

Conclusions
We applied a KrosFlo FS-15 RPM TFF system along 
with a VPT device for monitoring and automated 
management of high-concentration UF/DF runs. Using 

Figure 4: Real-time protein concentration trend from a concentration–diafiltration–concentration (C/D/C) run 
controlled by RPM software (initial concentration to 40 g/L and final concentration to 200 g/L); the dotted line 
represents the target concentration as determined by the software.
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a C/D/C approach with in-line protein concentrations 
as endpoints, the system demonstrated precision 
across a wide concentration spectrum. The automated 
control consistently maintained important process 
parameters, ensuring achievement of predetermined 
protein-concentration and DV setpoints. Our team also 
investigated the accuracy of in-line, concentration-
controlled TFF, observing consistent process 
performance even at high concentrations.

Highly concentrated mAb products (>150 g/L) 
create challenges for the TFF steps preceding 
formulation. High concentration changes a protein 
solution’s physical properties — e.g., by increasing its 
viscosity, density, and aggregation propensity. In 
traditional UF/DF setups, such changes diminish 
process control and complicate maintenance of CQAs 
within accepted ranges. TFF automation is becoming 
essential for downstream development because it can 
help to mitigate some of those issues. As 
demonstrated in runs surpassing the 200–250-g/L 
threshold, with operational adjustments for improved 
mixing and measurement, the automated procedure 
facilitated by RPM software proved to be highly 
effective in maintaining process parameters. The 
process also demonstrated good comparability 
between in-line and at-line measurements.

Implementing the system for high-concentration 
UF/DF runs can reduce risks associated with 
traditional methods — e.g., process and setup errors 
stemming from human factors and the need for 
complex calculations. Moreover, the system addresses 
limitations with conventional analytical methods, 
enhancing measurement accuracy. Such advantages 
can boost process-development efficiency significantly 
by providing real-time insights and the capacity to 
respond promptly to dynamic process changes.

Our work sheds light on optimization of high-
concentration biopharmaceutical production through 
in-line, concentration-controlled TFF. Incorporation 
of automated systems, coupled with strategic 
adjustments, proved to be instrumental in improving 
process efficiency, paving the way for future 
advancements in biopharmaceutical manufacturing.
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