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The key focus areas for this early Raman bioprocess work were 
cellular metabolites in a variety of biological systems, and this 
application has continued with rapidly expanding interest. 
Authors have also published on the possibility of assessing 
product quality attributes, such as protein post-translational 
modifications,12,13 and aggregation,14 among others. Citations 
related to “Raman +  bioprocess” have exponentially risen 
according to Google Scholar over the last 10 years (Figure 1) and 
appear to be poised to surpass 4000 citations in 2023. 

Figure 1. Google Scholar-reported citations to journal articles, patents & 
proceedings including keywords Raman + bioprocess.  

Challenge: Empirical Calibration Of Bioprocesses 

The analysis of Raman data in complex biosystems requires 
computational assistance. A wide variety of chemometric/
multivariate tools can be employed in this endeavor.15 With 
respect to modeling of critical process parameters and critical 
quality attributes (CPPs and CQAs), overwhelmingly partial least-
squares (PLS) regression is noted in the literature. PLS is one of a 
very large class of latent variable/regularized empirical linear 
calibration methods. The reasons for its apparent domination on 
chemical applications are largely historical and commercial, as it 
has no more favorable performance than other methods,16,17 but 
all empirical methods do enjoy the advantage that little to no 
detailed understanding is necessary of the underlying cell culture 
environment, chemistry, and physics of the measurement 
instrument. But there are several significant challenges in 
modeling bioprocess data using these empirical calibration 
approaches, as enumerated below. 
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Introduction 

Raman spectroscopy has enjoyed substantial 
growth in pharmaceutical applications over the 
last 20 years. Polymorph analysis was an early 
and unique capability that Raman offered in 
pharmaceutical analysis in analytical labs,1 along 
with superb spectral-microscopy capability for 
particle, substrate, and surface analysis.2 
Handheld Raman systems in pharma proliferated 
starting in the late 2010s. These systems were 
configured with purpose-build operating systems 
for excipient and API pharmacopeial identity 
testing in GMP environments,3,4 solid dosage form 
authentication & anti-counterfeit analysis5 and 
are now the de facto standard for high-efficiency 
GMP raw material identity testing. 

Bioprocess monitoring was a very early area of 
interest for spectroscopic platforms. Near-IR and 
mid-IR systems had been investigated for 
bioprocess metabolite monitoring applications as 
early as the late 1990s,6-8 but the profound 
absorption of water in the IR region severely 
limits the pathlengths usable for absorption 
measurements without excessive detector noise. 
Raman spectroscopy benefits from a 
comparatively weak water scattering cross-
section, and so it was unsurprising that Raman 
began to be investigated for this application in 
the very early 2000s as well.9-11 Raman technology 
also offers considerable flexibility in terms of 
optical sampling geometries, given the minimal 
interference of plastics, glasses, and minerals as 
sampling interfaces. 
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1. Nonstationarity & homoscedasticity: In mathematics and 
statistics “stationarity” is a term implying that each 
datum (spectrum in this case) is drawn from a random 
distribution with fixed distributional properties. The 
empirical methods such as PLS in most commercial 
software are only theoretically accurate and optimized 
with “stationary” data. This would imply that every 
bioprocess must run the same, with consistent 
correlations among chemical species. It also implies that 
the measurement variance in the instrument is always 
the same in time and channels (homoscedasticity). This is 
never true with Raman (or NIR or MIR absorption), and 
particularly not in bioprocesses when significant biomass 
can contribute to very large fluorescence differences 
between/within bioprocess runs, and therefore orders of 
magnitude difference in shot noise. 

2. Extreme covariates: Almost by definition there are 
extreme time-domain correlations between many species 
over the course of a bioprocess. The empirical methods 
that are widely used are designed to leverage those 
empirical time-domain correlations, but these are 
extremely prone to non-specific associations that have 
limited predictive accuracy or generalization.17,18 

3. Exchangeability & cross-validation: Related to the above, 
cross-validation is often done as a quasi-validation 
evaluation of an empirical model in data modeling 
efforts. For cross-validation results to be valid and 
representative, the data must be “exchangeable,”19 but 
for the reasons noted with respect to extreme covariates, 
this condition is typically grossly violated with bioprocess 
data. 

4. Trial-and-Error: Most of these empirical methods include 
a bevy of options for variable selection, preprocessing 
treatments, normalization, and correction methods. The 
recommended approach is “try it and see what seems to 
work,” as there is often little theoretical justification to 
guide the choice of one approach over another. 

5. Figures of Merit: Related to the above, the primary 
metric reported in most commercial software is RMSEC/
RMSECV/RMSEP: root-mean-squared- error-of-
calibration/cross-validation/prediction. Compendial 
analytical standards usually expect estimates of 
selectivity, linearity, precision, limit of detection, and 
sensitivity, but unfortunately, empirical modeling 
approaches don’t provide direct estimates of the central 
figures of merit.20 Users can do experimental work to 
evaluate these, but it is quite challenging and typically 
requires custom programming/analysis. 

6. Spectrometer variation: When empirical methods are 
developed, their covariance also captures properties and 

non-idealities of the individual spectrometer.21 When 
spectrometers are exchanged, or sources/detectors 
replaced, frequently the multivariate model needs to be 
corrected for relevance on the new spectrometer 
properties. A broad range of mathematical methods are 
used to perform this “calibration transfer.” 

7. Regulatory overhang: The black-box nature of empirical 
calibration methods requires extensive empirical 
validation efforts to demonstrate sensitivity, selectivity, 
linearity, and robustness. A few general guidelines have 
been offered in regulator documents (e.g., ICH Q14 10.3), 
but they are not particularly clear-cut or grounded in the 
mathematical basis of these methods. 

Given these challenges, it is little wonder that robust Raman 
method development and deployment has been a particularly 
vexing challenge in bioprocess applications. 

There have been numerous efforts to overcome several of 
these impediments. Intentionally perturbed and designed 
experiments can be used to try to “break” the extreme 
covariates that are intrinsically present and expand the range 
of the empirical data available for modeling.22 Several groups 
have reported success building “generic” models using PLS 
with various pre-treatment methods and have reported 
reasonable success for defined platform methods,23-26 but 
often upwards of 25-30 process runs were involved in these 
efforts at very considerable expense—several years of 
process time—and that excludes deployment and 
maintenance activities that follow. These literature results are 
consistent with reports from groups in industry reporting at 
technical conferences. 

It was our aim to ameliorate challenges with Raman 
implementation for bioprocess monitoring, initially for 
mammalian processes employing CHO and HEK293 cell lines 
which are widely used for protein/monoclonal antibodies and 
viral vector manufacturing, but with a scalable framework for 
future development opportunities. 

A de novo Model 

It is difficult to circumvent many of the aforementioned 
challenges with purely empirical modeling/calibration. Hybrid 
models are of increasing interest in the biology and 
bioprocess domains.27 To date, these approaches have largely 
combined knowledge of fundamental biological mechanisms, 
chemical engineering knowledge, computational fluid 
dynamics, and other elements, along with some empirically 
measured or observed data for increased process 
understanding. The more mechanistic elements of the model 
constrain the empirical optimization in such a way as to 
reduce the risk of overfitting/local minima and guide the 
overall model to an interpretable and robust approximation. 
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The use of first principles or building-block information to 
predict complex outcomes is sometimes referred to as de 
novo methods, such as de novo protein structure modeling,28 
and that is the terminology we have adopted to describe the 
MAVERICK® System’s computational framework.  

The MAVERICK System’s de novo model is derived from work 
dating as far back as the 70s on explicit probabilistic 
frameworks for multivariate calibration (MVC) such as the 
early work of Morgan and others.29-31 It is contrasted with the 
usual empirical multivariate calibration construct in Figure 2. 

The empirical MVC approach estimates a predictor b̂ from an 
approximation of observed spectral data, X (X̃), and paired 
reference data (y), in the presence of some reference error, e. 

The calculation of b̂ itself is elementary; the challenges 1-7 
noted above largely manifest in the approximation of X in 
each domain—what experiments should be done, on what 
hardware, across which conditions, how should the raw data 
be manipulated/processed prior to calculating b̂ , and how 
does the resultant model perform in truly prospective 
conditions. 

The approximation of X is essential to control the risk of 
overfitting with empirical methods, and there are many, 
many, many different possible approximators of X (X̃) that 
may be useful in practice. PLS (partial least-squares) is one of 
many subspace projection methods, and it is particularly 
widespread owing to its early inclusion in several commercial 
software packages. It is also common to also eliminate 
wavelength ranges or apply other linear or nonlinear 
transformations in the creation of X̃. The myriad options 
available for this approximation step of modeling are a 
significant secondary source of overfitting as sometimes 
hundreds or thousands of options are evaluated, ravenously 
consuming generalized degrees of freedom.32 

In contrast, MAVERICK’s de novo model doesn’t use any 
empirically observed X or y data. Instead, it uses the terms 

noted in Figure 2—some static and some dynamic—to create 
a “best linear predictor” at time t for the system under active 
measurement. While the heart of this model is probabilistic, 
several of its critical terms are directly derivable from first 
principles with sufficient knowledge of the optical train, 
electronics, and multivariate statistics. Since these effects are 
dynamic in a Raman system observing a bioprocess, several of 
the model terms are (unsurprisingly) dynamic. 

The formulary elements K,Ψ represent a “master list” of 
possible chemical/biochemical contributors to the observable 
Raman spectrum and an associated prior probability density 
function, from which concentration estimates are produced a 
posteriori. One might wonder how it is possible to cover all 
possibilities in the formulary, but there are a few helpful 
boundaries. While it is very likely that the number of 
chemical/biochemical species in an active bioprocess may 
number in the thousands,33 the limited sensitivity of Raman 
spectroscopy implies that one really needs only to consider 
the major components above approximately 0.01 g/L. At 
these limits in mammalian cultures, we have found that a few 
hundred intrinsic species are relevant, along with a cross-
section of non-biologic additives (e.g. surfactants, anti-
foaming agents). Deconvolving an observed Raman spectrum 
with that many degrees of freedom is generally an ill-posed 
problem, but using the de novo framework the solution is 
sufficiently self-conditioned to produce low-variance 
estimates of concentration.  

The remaining terms are both device and time dependent. F 
is an optimal filter function derived from a multidimensional 
factory characterization of each MAVERICK system and is 
adapted in real time for changing sample and system 
conditions. Many of the largest sources of error in Raman 
systems are Σ, the measurement error covariance in real 
time. Related, the system model also allows for Et to adapt 
to, for example, changing lighting, temperature, and turbidity 
conditions. Finally, since in a bioprocess the system state at 

Figure 2. High level comparison of traditional multivariate calibration approach versus MAVERICK’s 'de novo' model. 
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time t is related to the state at time t-1, environmental and 
autoregressive components (Λ) are included in the model for 
inertia. 

Figures of Merit 

Several properties of this estimator have been previously 
discussed, such as closed-form expressions for mean-squared 
error of prediction (MSEP).34 

 

 

 

 

 
As noted above, one consistent challenge in empirical model 
development is the opacity of the resulting model properties. 
It is quite rare to find publications demonstrating bioprocess 
Raman application citing standard analytical figures-of-
merit—sensitivity, selectivity, LOD for example—for the 
resulting models, because literature definitions are 
complicated for multivariate models. Sensitivity and 
selectivity factors consistent with the IUPAC definitions can 
be directly estimated from the de novo model following the 
processes noted.34 Lastly, other model diagnostics can also be 
inferred, such as in-plane and out-of-plane conformity, 
analogous to Hoteling or leverage statistics and  
F-ratios:35 

 

Quick Calibration 

The de novo approach of the MAVERICK system relieves a 
substantial burden from the end user but doesn’t make it 
completely free of all forms of calibration. Since MAVERICK 
systems are designed to plug and play across measurement 
modules, probe adapters, and probes, there is one 
preparatory step that is required to confirm quantitative 
system suitability before bioprocess analysis can begin. This is 
a 3-step process, guided on screen by the MAVERICK’s 
software: 

1. Immerse probe into “LOW” check solution, press go  
(wait approximately 4 minutes) 

2. Immerse probe into “HIGH” check solution, press go  
(wait approximately 4 minutes) 

3. Autoclave the probe for immersion in the actual 
bioprocess. 

Steps 1+2 check that several properties of the MAVERICK + 
probe are conforming with the de novo model, and a minor 

Figure 3. Example data from MAVERICK’s de novo Model running 
on various CHO (top) & HEK (bottom) processes.  

Figure 4. Example of behind-the-scenes figure of merit  
information from the 'de novo' model for forecasted RMSEP  
(gL-1) for glucose, lactate, and model selectivity (gL-1/gL-1) for lactate. 
Selectivity values close to one indicate excellent selectivity against 
the specified interferent. 
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scalar correction is made to the de novo model outputs for 
the particular combination of MAVERICK measurement 
model, probe adapter and probe. This information also allows 
for automated & audited performance qualification and 
tracking with the serialized/microchipped probe. MAVERICK 
also supports a single-point “live” reference which can be 
helpful to eliminate any small observed biases that may be 
consistent between a particular offline reference analyzer and 
MAVERICK’s de novo outputs. 

Illustratory Data 

Figure 3 illustrates example running performance of 
MAVERICK on CHO and HEK293 process using the turn-key de 
novo model, compared to some common offline reference 
analyzers (enzymatic). 

Figure 4 illustrates some of the behind-the-scenes diagnostic 
information that is afforded by the de novo model. This 
information was extracted from a CHO process running in a 
laboratory with large windows to the outdoors. In the upper 
figure, the small undulations observable in the estimated 
RMSE (g/L) are precisely as expected—the de novo model is 
tracking fundamental shot noise changes throughout the day/
night cycle, affecting Σ̂t . The same effect is propagating 
through to selectivity for glucose in the lower figure, which 
plots glucose selectivity against the top 20 other cell culture 
media components: as ambient lighting increases the de novo 
model adjusts and regularizes to preserve selectivity despite 
changes in ambient light. Glutathione is highlighted in green. 
While it happens to be the “least” glucose-selective species in 
this bioprocess run, as the y-axis indicates, glucose selectivity 
is still excellent (>0.99). 

The proliferation of cellular/proteinaceous material in the 
later stages of the bioprocess process can induce moderate to 
severe autofluorescence, which is well known to cause 
substantial difficulties with empirical calibration models. The 
de novo model’s figures of merit reflect this effect, observable 
as a slow general trend upward of the RMSE’s, but since the 
de novo model is tracking and compensating for the increase 
in shot noise from fluorescence in the measurement error 
model, this effect is handled quite seamlessly. 

Boundaries and Opportunities 

The key advantages of the de novo approach—namely 
transparency and the avoidance of the pitfalls of empirically 
derived models—can also be considered its key limitation. As 
noted above, if optically active components of the bioprocess 
are not represented in the formulary, measurement error 
model, or environmental model, the results reported by the 
de novo model are apt to be biased. The degree to which they 
are biased depends heavily on how optically active they are: 
trace metals in the low microgram/liter level will have no 

impact because a) they are optically inactive and b) the 
concentrations are far too low to be observed with Raman in 
solution. In general, only covalently bonded chemical species 
in the 0.01 g/L range and above are considered relevant. 

The de novo construct is also unable to support so-called “soft 
sensors”—virtual parameters that may be inferred from 
empirically observed data, even if there are no direct spectral 
effects (e.g. pH). Without an aetiologic spectral effect for 
formulary inclusion, the de novo model cannot be applied. For 
those interested in soft-sensor modeling or extended 
prediction models, customers may choose to take advantage 
of MAVERICK’s full spectral exports, which can be accessed in 
real time via OPC UA, or as a consolidated data file at the 
conclusion of a measurement session.  

There are further opportunities to exploit hybrid modeling 
approaches for Ψ and K. At present a single Ψ seems to be 
adequate for mammalian bioprocesses, but we are exploring 
an adaptive Ψ for even more diverse media systems (e.g. non-
CHO or HEK293 mammalian, avian, insect etc.), or 
alternatively, dynamic constraints on K if it is apparent from 
the data that particular formulary components are absent, 
e.g., via an L1-type regularization.36 It doesn’t escape our 
notice that dynamical systems models such as so-called digital 
twins may also directly interface with the de novo model for 
continuous time-domain updates. 
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