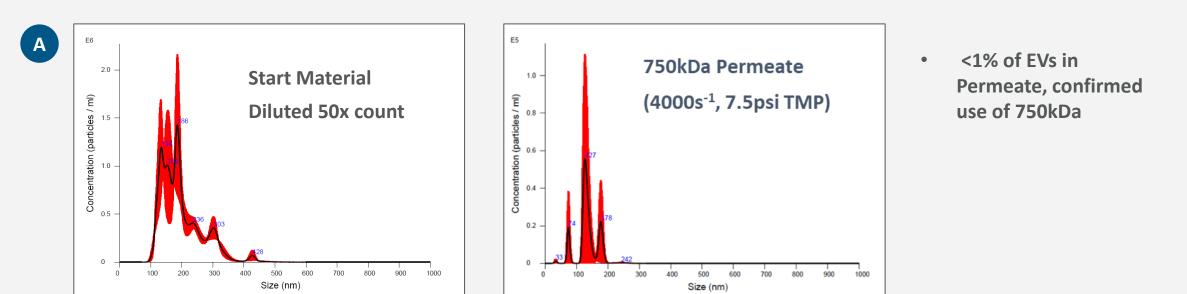
Development of manufacturing therapeutic platform for EVs derived from MSC using Tangential Flow Depth Filtration (TFDF[®]) and Tangential Flow Filtration (TFF)

Elie Zakhem, RoosterBio • Jae Jung, RoosterBio • Cameron Garland, RoosterBio • Michael Boychyn, RoosterBio • Lauren Torres, Repligen • Mario Sinani, Repligen • Carl Breuning, Repligen • Jeremy Neidert, Repligen • Rachel Legmann, Repligen

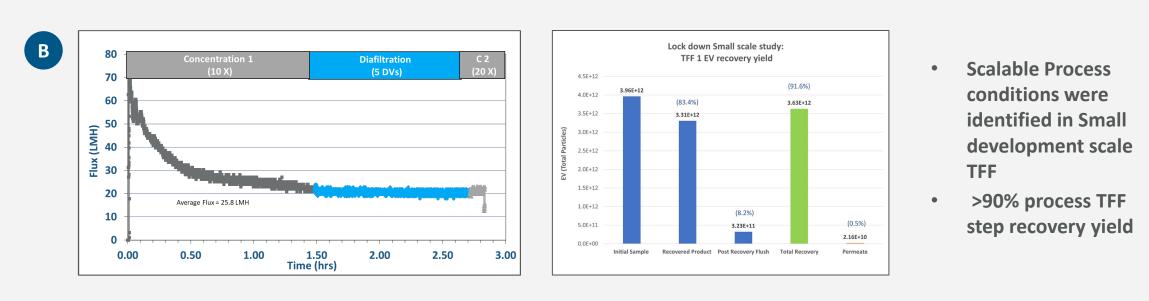
RoosterBio®

Introduction

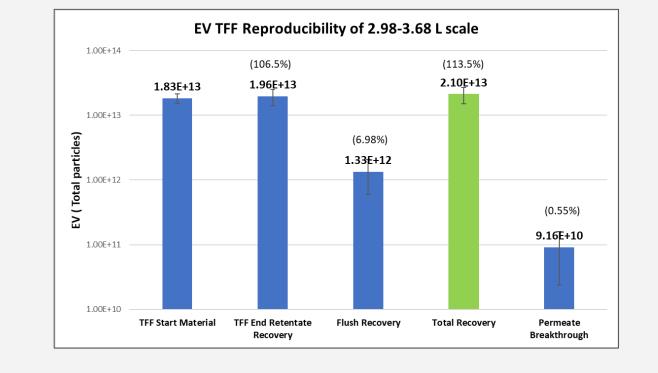

There has been a growing demand in Extracellular Vesicle (EV) supply in recent years due to their emerging role as intercellular messengers and their therapeutic potential as targeted and natural drug delivery vehicles with high specificity and efficiency. The number of clinical trials investigating MSC-EVs as therapeutic and skincare agents has been increasing greatly over the years. The complexity and fragility of the EV products, scalability, yield, and purity of production processes are challenges to meeting demand. In this study, we used two scalable platforms to overcome those challenges.

Collaboration Objective

To deliver solutions for manufacturing of EVs using scalable and low shear technologies that enable cost-effective commercialization of these advanced therapies.


TFF Small development scale (0.5 L)

For concentrating the clarified harvest post TFDF[®], flux excursions and retention experiments were performed to identify scalable operating conditions and the best membrane molecular weight cutoff.



Advanced EVs Manufacturing Workflow

Scalability and reproducibility

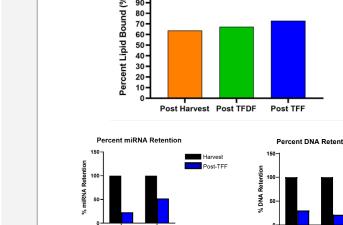
• Great reproducibility between the three runs


Development of Scalable Downstream Processing Platform for Therapeutic Extracellular Vesicles.

EV Industrial Platform

RoosterBio Upstream Platform

RoosterBio is an industry-leader in manufacturing highquality hMSCs along with paired bioprocess medium formulations for cell growth and EV production



Repligen Downstream Platform

KrosFlo[®] KR2i TFF System KrosFlo[®] TFDF[®] System **Operated in clarification mode** Enabling highly efficient and scalable, harvest clarification and concentration steps

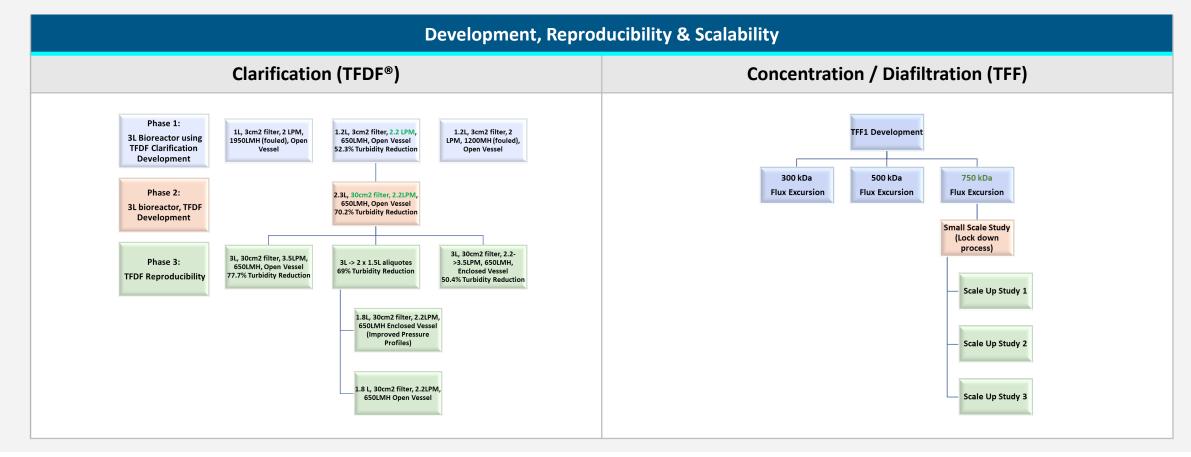
- Large pore size easily transmits large particles such as EVs
- Enclosed, single-use solution
- Scalable from 1 2000L • Eliminates need for
- centrifugation or depth filtration Fast set-up
- High filtration capacity
- High flux rates (>650LMH) Customizable flow path
- complete with sensors, tubing, and connectors.
- Automated process control logic
- Compatible with hollow fiber filters and flat sheet cassettes • Fully integrated functionality,
- easy to use • Log data and control
- tangential flow filtration operations with KF Comm software
- Interfaces with auxiliary scales
- and pumps for automated process control

- - EVs generated from this process stained positive for EV specific tetraspanins markers (CD9, CD63,
- In an in vitro wound healing assay, wounds treated with EV samples generated through TFF induced >80%

Potency

In-Vitro wound assay

Material and Method


MSC-EVs were generated in a microcarrier-based bioreactor at 2L scale using RoosterBio xeno-free hMSCs (RoosterVial[™] hMSC) coupled with RoosterBio MSC expansion media (RoosterNourish[™]-XF), and RoosterBio EV collection media (RoosterCollect[™]). Clarification was developed using tangential flow depth filtration (TFDF[®]) system, followed by concentration and formulation buffer exchange using a KrosFlo[®] KR2i tangential flow filtration (TFF) system.

For EV harvest clarification 3 cm² TFDF[®] filter with a pore size of 2-5 μm were used for development scale and 30 cm2 TFDF[®] filter surface area were used for 3 L.

Hollow fiber filters with MWCO of 300, 500 and 750 kDa were used in TFF development scale with 115 cm² surface area and HF surface area of 790 cm² for processing larger scale.

EV Analytics: Critical Quality Attributes for EVs were evaluated through staining with lipid bound membrane dye, expression of EV specific tetraspanin markers (CD81, CD63 and CD9), miRNA content, DNA content and in vitro potency assay (wound assay).

Study Design Workflow

Results and Discussion

Run# Phase NTU Crude NTU Post-TFDF 1 1b 20.3 9.8	tion using TF	-DE							
1 1b 20.3 9.8 Filter Information and Process Parameters Gale Up Scale Up Scale Up	J		NTU Crude	NTU Post-TEDE		Small Scale Study			
2 1a 23.5 12.9 parameters)		1b			Filter Information and Process Parameters	(identified process	Scale Up Experiment 1	Scale Up Experiment 2	Scale Up Experiment 3
2 1a 23.5 12.9 parameters) Image: Constraint of the second sec			27.8	11.6	Type of Process			UFDF (C/D/C)	

membrane dye (MemGlow), indicating that those particles are EVs and they maintained their

~70% of particles generated in this

process stained positive with lipid

Purity

Purity: Percent Lipid Bound (MEMGlow)

- integrity throughout the process. The developed downstream process cleared over 70% of DNA (impurity host DNA) without compromising on the generated EVs contain miRNA
- CD81) using western blot, further confirming the EV identity.

Identity

CD63

CD81

Sample 1: Harvested conditioned media, Sample 2: TFDF[®], Sample 3: TFF

wound closure (compared to 100% positive control and ~40% negative control), indicating that the EVs generated in this process maintained their potency.

Scalability of TFDF[®] and TFF downstream steps for EV Benchtop development scale to commercialization scale

		EV Harvest	Clarification usi	ng TFDF® at diffe	erent scales		
Filter	Filter Area (cm ²)	Typical Batch Size (L)	Recirculation Flow Rate (L/min)	Throughput @ 20% Expansion (L/m²)	Permeate Flux (LMH)	Permeate Flow Rate (L/min)	Process Time (h)
TFDF [®] 30	30	3	3	1200	650	0.0325	1.85
TFDF-450	450	45	9	1200	650	0.488	1.85
TFDF-2100	2100	210	42	1200	650	2.2750	1.76

EV Co	centration and Diafiltration using TFF at different scales					
Filter Information and Process Parameters	Small Scale Locked down process	Scale Up Process	Scalable Plan	Scalable Plan		
Type of Process	UFDF (C/D/C)	UFDF (C/D/C)	UFDF (C/D/C)	UFDF (C/D/C)		
Filter Used	Spectrum MidiKros D02-E750-05-N	Spectrum MidiKros Sampler S02-E750-05-N	Spectrum KrosFlo Max X04-E750-05-N*	Spectrum KrosFlo Max X06-E750-05-N*		
Filter MWCO (kDa)	750	750	750	750		
Filter Chemistry	mPES	mPES	mPES	mPES		
Filter Area (m ²)	0.0115	0.079	7.8	12.8		
Volume Loaded (L)	0.583	4	240	600		
Loading Ratio (L/m ²)	50.6	50.6	30.8	46.9		
Process Time (hr)	2.8	2.8	1.8	2.8		

Conclusion

- The identified optimal parameters yielded high EV recovery, while maintaining MSC-EV identity and potency as demonstrated by lipid membrane dye staining, positive EV markers (CD81, CD63 and CD9) and in vitro wound closure assay.
- The EV downstream clarification process step using KrosFlo[®] TFDF[®] System has been demonstrated a recovery

-	2	15.0	5.5
5	3a	24.2	5.4
6	3b	24.2	7.5
7	3c	13.5	6.695

Key process parameters for EV clarification step, during the development phase, were identified using a 3 cm² TFDF[®] system with a pore size of 2-5 μ m and a recirculation rate of 2.0-2.2 LPM resulted in a high permeate flux of 650 LMH. Identified parameters can be scaled to a 2000 L bioreactor using 0.6 m² TFDF[®] surface area with a throughput of 4000 L/m² and a step time of less than 2.5 hours.

- EV recovery yield of 86% comparable to the centrifugation control
- Short Process Step Time at all scales (<2hr)
- Sterile closed single-use solution for cell culture clarification

Starting furbidity		4.8 NTU	4.1 NTU	6.7 NTU		
Filter MWCO	750kDa	750kDa				
Filter Chemistry	mPES	mPES				
Filter Area	115cm2 (0.0115m2)	790cm2 (0.079m2)				
Volume Loaded	583mL	3.26L	3.68 L	2.98L		
Loading Ratio	50.6 L/m2	41.2 L/m2	46.6 L/m2	37.7 L/m2		
Total Particles	3.96E+12	1.79E+13	1.55E+13	2.16E+13		
Loading Ratio	1.56E+15/m2	2.27E+14/m2	1.96E+14/m2	2.73E+14/m2		
Shear	4000s ⁻¹	4000s ⁻¹				
TMP control	5psi	5psi				
Processing Steps	C1: 10 X	C1: 10 X				
	D: 5 DVs	D: 5 DVs				
	C2: 20 X	C2: 20 X				
Process Time	2.8h	2.0h	2.7h	3.2h*		

yield of 86% comparable to the centrifugation and simplified the downstream process by eliminating secondary depth filtration Step prior to TFF1

- High recovery yield (92%) of potent EVs was achieved both at small scale and large scale
- High flux for TFDF[®] and the TFF enables fast process time at all scale, less than 3 hours each downstream step
- This study clearly demonstrated that integrating automated scalable single used closed system platforms, TFDF[®] and TFF KR2i, operated at an early development step simplified and de-risks the manufacturing process at large scale with a high recovery yield, identity, and potency of the EVs
- In this collaborative study, RoosterBio and Repligen successfully developed and advanced scalable EV bioprocessing

